#include #include #include #include #include #include "float_math.h" /*! ** ** Copyright (c) 2007 by John W. Ratcliff mailto:jratcliff@infiniplex.net ** ** Portions of this source has been released with the PhysXViewer application, as well as ** Rocket, CreateDynamics, ODF, and as a number of sample code snippets. ** ** If you find this code useful or you are feeling particularily generous I would ** ask that you please go to http://www.amillionpixels.us and make a donation ** to Troy DeMolay. ** ** DeMolay is a youth group for young men between the ages of 12 and 21. ** It teaches strong moral principles, as well as leadership skills and ** public speaking. The donations page uses the 'pay for pixels' paradigm ** where, in this case, a pixel is only a single penny. Donations can be ** made for as small as $4 or as high as a $100 block. Each person who donates ** will get a link to their own site as well as acknowledgement on the ** donations blog located here http://www.amillionpixels.blogspot.com/ ** ** If you wish to contact me you can use the following methods: ** ** Skype Phone: 636-486-4040 (let it ring a long time while it goes through switches) ** Skype ID: jratcliff63367 ** Yahoo: jratcliff63367 ** AOL: jratcliff1961 ** email: jratcliff@infiniplex.net ** Personal website: http://jratcliffscarab.blogspot.com ** Coding Website: http://codesuppository.blogspot.com ** FundRaising Blog: http://amillionpixels.blogspot.com ** Fundraising site: http://www.amillionpixels.us ** New Temple Site: http://newtemple.blogspot.com ** ** ** The MIT license: ** ** Permission is hereby granted, free of charge, to any person obtaining a copy ** of this software and associated documentation files (the "Software"), to deal ** in the Software without restriction, including without limitation the rights ** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ** copies of the Software, and to permit persons to whom the Software is furnished ** to do so, subject to the following conditions: ** ** The above copyright notice and this permission notice shall be included in all ** copies or substantial portions of the Software. ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR ** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, ** WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN ** CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ // a set of routines that let you do common 3d math // operations without any vector, matrix, or quaternion // classes or templates. // // a vector (or point) is a 'double *' to 3 doubleing point numbers. // a matrix is a 'double *' to an array of 16 doubleing point numbers representing a 4x4 transformation matrix compatible with D3D or OGL // a quaternion is a 'double *' to 4 doubles representing a quaternion x,y,z,w // // // // Please email bug fixes or improvements to John W. Ratcliff at mailto:jratcliff@infiniplex.net // // If you find this source code useful donate a couple of bucks to my kid's fund raising website at // www.amillionpixels.us // // More snippets at: www.codesuppository.com // namespace ConvexDecomposition { void fm_inverseRT(const double *matrix,const double *pos,double *t) // inverse rotate translate the point. { double _x = pos[0] - matrix[3*4+0]; double _y = pos[1] - matrix[3*4+1]; double _z = pos[2] - matrix[3*4+2]; // Multiply inverse-translated source vector by inverted rotation transform t[0] = (matrix[0*4+0] * _x) + (matrix[0*4+1] * _y) + (matrix[0*4+2] * _z); t[1] = (matrix[1*4+0] * _x) + (matrix[1*4+1] * _y) + (matrix[1*4+2] * _z); t[2] = (matrix[2*4+0] * _x) + (matrix[2*4+1] * _y) + (matrix[2*4+2] * _z); } void fm_identity(double *matrix) // set 4x4 matrix to identity. { matrix[0*4+0] = 1; matrix[1*4+1] = 1; matrix[2*4+2] = 1; matrix[3*4+3] = 1; matrix[1*4+0] = 0; matrix[2*4+0] = 0; matrix[3*4+0] = 0; matrix[0*4+1] = 0; matrix[2*4+1] = 0; matrix[3*4+1] = 0; matrix[0*4+2] = 0; matrix[1*4+2] = 0; matrix[3*4+2] = 0; matrix[0*4+3] = 0; matrix[1*4+3] = 0; matrix[2*4+3] = 0; } void fm_eulerMatrix(double ax,double ay,double az,double *matrix) // convert euler (in radians) to a dest 4x4 matrix (translation set to zero) { double quat[4]; fm_eulerToQuat(ax,ay,az,quat); fm_quatToMatrix(quat,matrix); } void fm_getAABB(unsigned int vcount,const double *points,unsigned int pstride,double *bmin,double *bmax) { const unsigned char *source = (const unsigned char *) points; bmin[0] = points[0]; bmin[1] = points[1]; bmin[2] = points[2]; bmax[0] = points[0]; bmax[1] = points[1]; bmax[2] = points[2]; for (unsigned int i=1; i bmax[0] ) bmax[0] = p[0]; if ( p[1] > bmax[1] ) bmax[1] = p[1]; if ( p[2] > bmax[2] ) bmax[2] = p[2]; } } void fm_eulerToQuat(double roll,double pitch,double yaw,double *quat) // convert euler angles to quaternion. { roll *= 0.5f; pitch *= 0.5f; yaw *= 0.5f; double cr = cos(roll); double cp = cos(pitch); double cy = cos(yaw); double sr = sin(roll); double sp = sin(pitch); double sy = sin(yaw); double cpcy = cp * cy; double spsy = sp * sy; double spcy = sp * cy; double cpsy = cp * sy; quat[0] = ( sr * cpcy - cr * spsy); quat[1] = ( cr * spcy + sr * cpsy); quat[2] = ( cr * cpsy - sr * spcy); quat[3] = cr * cpcy + sr * spsy; } void fm_quatToMatrix(const double *quat,double *matrix) // convert quaterinion rotation to matrix, zeros out the translation component. { double xx = quat[0]*quat[0]; double yy = quat[1]*quat[1]; double zz = quat[2]*quat[2]; double xy = quat[0]*quat[1]; double xz = quat[0]*quat[2]; double yz = quat[1]*quat[2]; double wx = quat[3]*quat[0]; double wy = quat[3]*quat[1]; double wz = quat[3]*quat[2]; matrix[0*4+0] = 1 - 2 * ( yy + zz ); matrix[1*4+0] = 2 * ( xy - wz ); matrix[2*4+0] = 2 * ( xz + wy ); matrix[0*4+1] = 2 * ( xy + wz ); matrix[1*4+1] = 1 - 2 * ( xx + zz ); matrix[2*4+1] = 2 * ( yz - wx ); matrix[0*4+2] = 2 * ( xz - wy ); matrix[1*4+2] = 2 * ( yz + wx ); matrix[2*4+2] = 1 - 2 * ( xx + yy ); matrix[3*4+0] = 0.0f; matrix[3*4+1] = 0.0f; matrix[3*4+2] = 0.0f; matrix[0*4+3] = 0.0f; matrix[1*4+3] = 0.0f; matrix[2*4+3] = 0.0f; matrix[3*4+3] =(double) 1.0f; } void fm_quatRotate(const double *quat,const double *v,double *r) // rotate a vector directly by a quaternion. { double left[4]; left[0] = quat[3]*v[0] + quat[1]*v[2] - v[1]*quat[2]; left[1] = quat[3]*v[1] + quat[2]*v[0] - v[2]*quat[0]; left[2] = quat[3]*v[2] + quat[0]*v[1] - v[0]*quat[1]; left[3] = - quat[0]*v[0] - quat[1]*v[1] - quat[2]*v[2]; r[0] = (left[3]*-quat[0]) + (quat[3]*left[0]) + (left[1]*-quat[2]) - (-quat[1]*left[2]); r[1] = (left[3]*-quat[1]) + (quat[3]*left[1]) + (left[2]*-quat[0]) - (-quat[2]*left[0]); r[2] = (left[3]*-quat[2]) + (quat[3]*left[2]) + (left[0]*-quat[1]) - (-quat[0]*left[1]); } void fm_getTranslation(const double *matrix,double *t) { t[0] = matrix[3*4+0]; t[1] = matrix[3*4+1]; t[2] = matrix[3*4+2]; } void fm_matrixToQuat(const double *matrix,double *quat) // convert the 3x3 portion of a 4x4 matrix into a quaterion as x,y,z,w { double tr = matrix[0*4+0] + matrix[1*4+1] + matrix[2*4+2]; // check the diagonal if (tr > 0.0f ) { double s = (double) sqrt ( (double) (tr + 1.0f) ); quat[3] = s * 0.5f; s = 0.5f / s; quat[0] = (matrix[1*4+2] - matrix[2*4+1]) * s; quat[1] = (matrix[2*4+0] - matrix[0*4+2]) * s; quat[2] = (matrix[0*4+1] - matrix[1*4+0]) * s; } else { // diagonal is negative int nxt[3] = {1, 2, 0}; double qa[4]; int i = 0; if (matrix[1*4+1] > matrix[0*4+0]) i = 1; if (matrix[2*4+2] > matrix[i*4+i]) i = 2; int j = nxt[i]; int k = nxt[j]; double s = sqrt ( ((matrix[i*4+i] - (matrix[j*4+j] + matrix[k*4+k])) + 1.0f) ); qa[i] = s * 0.5f; if (s != 0.0f ) s = 0.5f / s; qa[3] = (matrix[j*4+k] - matrix[k*4+j]) * s; qa[j] = (matrix[i*4+j] + matrix[j*4+i]) * s; qa[k] = (matrix[i*4+k] + matrix[k*4+i]) * s; quat[0] = qa[0]; quat[1] = qa[1]; quat[2] = qa[2]; quat[3] = qa[3]; } } double fm_sphereVolume(double radius) // return's the volume of a sphere of this radius (4/3 PI * R cubed ) { return (4.0f / 3.0f ) * FM_PI * radius * radius * radius; } double fm_cylinderVolume(double radius,double h) { return FM_PI * radius * radius *h; } double fm_capsuleVolume(double radius,double h) { double volume = fm_sphereVolume(radius); // volume of the sphere portion. double ch = h-radius*2; // this is the cylinder length if ( ch > 0 ) { volume+=fm_cylinderVolume(radius,ch); } return volume; } void fm_transform(const double *matrix,const double *v,double *t) // rotate and translate this point { t[0] = (matrix[0*4+0] * v[0]) + (matrix[1*4+0] * v[1]) + (matrix[2*4+0] * v[2]) + matrix[3*4+0]; t[1] = (matrix[0*4+1] * v[0]) + (matrix[1*4+1] * v[1]) + (matrix[2*4+1] * v[2]) + matrix[3*4+1]; t[2] = (matrix[0*4+2] * v[0]) + (matrix[1*4+2] * v[1]) + (matrix[2*4+2] * v[2]) + matrix[3*4+2]; } void fm_rotate(const double *matrix,const double *v,double *t) // rotate and translate this point { t[0] = (matrix[0*4+0] * v[0]) + (matrix[1*4+0] * v[1]) + (matrix[2*4+0] * v[2]); t[1] = (matrix[0*4+1] * v[0]) + (matrix[1*4+1] * v[1]) + (matrix[2*4+1] * v[2]); t[2] = (matrix[0*4+2] * v[0]) + (matrix[1*4+2] * v[1]) + (matrix[2*4+2] * v[2]); } double fm_distance(const double *p1,const double *p2) { double dx = p1[0] - p2[0]; double dy = p1[1] - p2[1]; double dz = p1[2] - p2[2]; return sqrt( dx*dx + dy*dy + dz *dz ); } double fm_distanceSquared(const double *p1,const double *p2) { double dx = p1[0] - p2[0]; double dy = p1[1] - p2[1]; double dz = p1[2] - p2[2]; return dx*dx + dy*dy + dz *dz; } double fm_computePlane(const double *A,const double *B,const double *C,double *n) // returns D { double vx = (B[0] - C[0]); double vy = (B[1] - C[1]); double vz = (B[2] - C[2]); double wx = (A[0] - B[0]); double wy = (A[1] - B[1]); double wz = (A[2] - B[2]); double vw_x = vy * wz - vz * wy; double vw_y = vz * wx - vx * wz; double vw_z = vx * wy - vy * wx; double mag = sqrt((vw_x * vw_x) + (vw_y * vw_y) + (vw_z * vw_z)); if ( mag < 0.000001f ) { mag = 0; } else { mag = 1.0f/mag; } double x = vw_x * mag; double y = vw_y * mag; double z = vw_z * mag; double D = 0.0f - ((x*A[0])+(y*A[1])+(z*A[2])); n[0] = x; n[1] = y; n[2] = z; return D; } double fm_distToPlane(const double *plane,const double *p) // computes the distance of this point from the plane. { return p[0]*plane[0]+p[1]*plane[1]+p[2]*plane[2]+plane[3]; } double fm_dot(const double *p1,const double *p2) { return p1[0]*p2[0]+p1[1]*p2[2]+p1[2]*p2[2]; } void fm_cross(double *cross,const double *a,const double *b) { cross[0] = a[1]*b[2] - a[2]*b[1]; cross[1] = a[2]*b[0] - a[0]*b[2]; cross[2] = a[0]*b[1] - a[1]*b[0]; } void fm_computeNormalVector(double *n,const double *p1,const double *p2) { n[0] = p2[0] - p1[0]; n[1] = p2[1] - p1[1]; n[2] = p2[2] - p1[2]; fm_normalize(n); } bool fm_computeWindingOrder(const double *p1,const double *p2,const double *p3) // returns true if the triangle is clockwise. { bool ret = false; double v1[3]; double v2[3]; fm_computeNormalVector(v1,p1,p2); // p2-p1 (as vector) and then normalized fm_computeNormalVector(v2,p1,p3); // p3-p1 (as vector) and then normalized double cross[3]; fm_cross(cross, v1, v2 ); double ref[3] = { 1, 0, 0 }; double d = fm_dot( cross, ref ); if ( d <= 0 ) ret = false; else ret = true; return ret; } void fm_normalize(double *n) // normalize this vector { double dist = n[0]*n[0] + n[1]*n[1] + n[2]*n[2]; double mag = 0; if ( dist > 0.0000001f ) mag = 1.0f / sqrt(dist); n[0]*=mag; n[1]*=mag; n[2]*=mag; } }; // end of namespace