315 lines
8.5 KiB
C++
315 lines
8.5 KiB
C++
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
/*!
|
|
**
|
|
** Copyright (c) 2007 by John W. Ratcliff mailto:jratcliff@infiniplex.net
|
|
**
|
|
** Portions of this source has been released with the PhysXViewer application, as well as
|
|
** Rocket, CreateDynamics, ODF, and as a number of sample code snippets.
|
|
**
|
|
** If you find this code useful or you are feeling particularily generous I would
|
|
** ask that you please go to http://www.amillionpixels.us and make a donation
|
|
** to Troy DeMolay.
|
|
**
|
|
** DeMolay is a youth group for young men between the ages of 12 and 21.
|
|
** It teaches strong moral principles, as well as leadership skills and
|
|
** public speaking. The donations page uses the 'pay for pixels' paradigm
|
|
** where, in this case, a pixel is only a single penny. Donations can be
|
|
** made for as small as $4 or as high as a $100 block. Each person who donates
|
|
** will get a link to their own site as well as acknowledgement on the
|
|
** donations blog located here http://www.amillionpixels.blogspot.com/
|
|
**
|
|
** If you wish to contact me you can use the following methods:
|
|
**
|
|
** Skype Phone: 636-486-4040 (let it ring a long time while it goes through switches)
|
|
** Skype ID: jratcliff63367
|
|
** Yahoo: jratcliff63367
|
|
** AOL: jratcliff1961
|
|
** email: jratcliff@infiniplex.net
|
|
** Personal website: http://jratcliffscarab.blogspot.com
|
|
** Coding Website: http://codesuppository.blogspot.com
|
|
** FundRaising Blog: http://amillionpixels.blogspot.com
|
|
** Fundraising site: http://www.amillionpixels.us
|
|
** New Temple Site: http://newtemple.blogspot.com
|
|
**
|
|
**
|
|
** The MIT license:
|
|
**
|
|
** Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
** of this software and associated documentation files (the "Software"), to deal
|
|
** in the Software without restriction, including without limitation the rights
|
|
** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
** copies of the Software, and to permit persons to whom the Software is furnished
|
|
** to do so, subject to the following conditions:
|
|
**
|
|
** The above copyright notice and this permission notice shall be included in all
|
|
** copies or substantial portions of the Software.
|
|
|
|
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
** WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
** CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "planetri.h"
|
|
|
|
namespace ConvexDecomposition
|
|
{
|
|
|
|
|
|
static inline double DistToPt(const double *p,const double *plane)
|
|
{
|
|
double x = p[0];
|
|
double y = p[1];
|
|
double z = p[2];
|
|
double d = x*plane[0] + y*plane[1] + z*plane[2] + plane[3];
|
|
return d;
|
|
}
|
|
|
|
|
|
static PlaneTriResult getSidePlane(const double *p,const double *plane,double epsilon)
|
|
{
|
|
|
|
double d = DistToPt(p,plane);
|
|
|
|
if ( (d+epsilon) > 0 )
|
|
return PTR_FRONT; // it is 'in front' within the provided epsilon value.
|
|
|
|
return PTR_BACK;
|
|
}
|
|
|
|
static void add(const double *p,double *dest,unsigned int tstride,unsigned int &pcount)
|
|
{
|
|
char *d = (char *) dest;
|
|
d = d + pcount*tstride;
|
|
dest = (double *) d;
|
|
dest[0] = p[0];
|
|
dest[1] = p[1];
|
|
dest[2] = p[2];
|
|
pcount++;
|
|
assert( pcount <= 4 );
|
|
}
|
|
|
|
|
|
// assumes that the points are on opposite sides of the plane!
|
|
static void intersect(const double *p1,const double *p2,double *split,const double *plane)
|
|
{
|
|
|
|
double dp1 = DistToPt(p1,plane);
|
|
double dp2 = DistToPt(p2,plane);
|
|
|
|
double dir[3];
|
|
|
|
dir[0] = p2[0] - p1[0];
|
|
dir[1] = p2[1] - p1[1];
|
|
dir[2] = p2[2] - p1[2];
|
|
|
|
double dot1 = dir[0]*plane[0] + dir[1]*plane[1] + dir[2]*plane[2];
|
|
double dot2 = dp1 - plane[3];
|
|
|
|
double t = -(plane[3] + dot2 ) / dot1;
|
|
|
|
split[0] = (dir[0]*t)+p1[0];
|
|
split[1] = (dir[1]*t)+p1[1];
|
|
split[2] = (dir[2]*t)+p1[2];
|
|
|
|
}
|
|
|
|
#define MAXPTS 256
|
|
|
|
class point
|
|
{
|
|
public:
|
|
|
|
void set(const double *p)
|
|
{
|
|
x = p[0];
|
|
y = p[1];
|
|
z = p[2];
|
|
}
|
|
|
|
double x;
|
|
double y;
|
|
double z;
|
|
};
|
|
class polygon
|
|
{
|
|
public:
|
|
polygon(void)
|
|
{
|
|
mVcount = 0;
|
|
}
|
|
|
|
polygon(const double *p1,const double *p2,const double *p3)
|
|
{
|
|
mVcount = 3;
|
|
mVertices[0].set(p1);
|
|
mVertices[1].set(p2);
|
|
mVertices[2].set(p3);
|
|
}
|
|
|
|
|
|
int NumVertices(void) const { return mVcount; };
|
|
|
|
const point& Vertex(int index)
|
|
{
|
|
if ( index < 0 ) index+=mVcount;
|
|
return mVertices[index];
|
|
};
|
|
|
|
|
|
void set(const point *pts,int count)
|
|
{
|
|
for (int i=0; i<count; i++)
|
|
{
|
|
mVertices[i] = pts[i];
|
|
}
|
|
mVcount = count;
|
|
}
|
|
|
|
int mVcount;
|
|
point mVertices[MAXPTS];
|
|
};
|
|
|
|
class plane
|
|
{
|
|
public:
|
|
plane(const double *p)
|
|
{
|
|
normal.x = p[0];
|
|
normal.y = p[1];
|
|
normal.z = p[2];
|
|
D = p[3];
|
|
}
|
|
|
|
double Classify_Point(const point &p)
|
|
{
|
|
return p.x*normal.x + p.y*normal.y + p.z*normal.z + D;
|
|
}
|
|
|
|
point normal;
|
|
double D;
|
|
};
|
|
|
|
void Split_Polygon(polygon *poly, plane *part, polygon &front, polygon &back)
|
|
{
|
|
int count = poly->NumVertices ();
|
|
int out_c = 0, in_c = 0;
|
|
point ptA, ptB,outpts[MAXPTS],inpts[MAXPTS];
|
|
double sideA, sideB;
|
|
ptA = poly->Vertex (count - 1);
|
|
sideA = part->Classify_Point (ptA);
|
|
for (int i = -1; ++i < count;)
|
|
{
|
|
ptB = poly->Vertex(i);
|
|
sideB = part->Classify_Point(ptB);
|
|
if (sideB > 0)
|
|
{
|
|
if (sideA < 0)
|
|
{
|
|
point v;
|
|
intersect(&ptB.x, &ptA.x, &v.x, &part->normal.x );
|
|
outpts[out_c++] = inpts[in_c++] = v;
|
|
}
|
|
outpts[out_c++] = ptB;
|
|
}
|
|
else if (sideB < 0)
|
|
{
|
|
if (sideA > 0)
|
|
{
|
|
point v;
|
|
intersect(&ptB.x, &ptA.x, &v.x, &part->normal.x );
|
|
outpts[out_c++] = inpts[in_c++] = v;
|
|
}
|
|
inpts[in_c++] = ptB;
|
|
}
|
|
else
|
|
outpts[out_c++] = inpts[in_c++] = ptB;
|
|
ptA = ptB;
|
|
sideA = sideB;
|
|
}
|
|
|
|
front.set(&outpts[0], out_c);
|
|
back.set(&inpts[0], in_c);
|
|
}
|
|
|
|
PlaneTriResult planeTriIntersection(const double *_plane, // the plane equation in Ax+By+Cz+D format
|
|
const double *triangle, // the source triangle.
|
|
unsigned int tstride, // stride in bytes of the input and output *vertices*
|
|
double epsilon, // the co-planer epsilon value.
|
|
double *front, // the triangle in front of the
|
|
unsigned int &fcount, // number of vertices in the 'front' triangle
|
|
double *back, // the triangle in back of the plane
|
|
unsigned int &bcount) // the number of vertices in the 'back' triangle.
|
|
{
|
|
|
|
fcount = 0;
|
|
bcount = 0;
|
|
|
|
const char *tsource = (const char *) triangle;
|
|
|
|
// get the three vertices of the triangle.
|
|
const double *p1 = (const double *) (tsource);
|
|
const double *p2 = (const double *) (tsource+tstride);
|
|
const double *p3 = (const double *) (tsource+tstride*2);
|
|
|
|
|
|
PlaneTriResult r1 = getSidePlane(p1,_plane,epsilon); // compute the side of the plane each vertex is on
|
|
PlaneTriResult r2 = getSidePlane(p2,_plane,epsilon);
|
|
PlaneTriResult r3 = getSidePlane(p3,_plane,epsilon);
|
|
|
|
if ( r1 == r2 && r1 == r3 ) // if all three vertices are on the same side of the plane.
|
|
{
|
|
if ( r1 == PTR_FRONT ) // if all three are in front of the plane, then copy to the 'front' output triangle.
|
|
{
|
|
add(p1,front,tstride,fcount);
|
|
add(p2,front,tstride,fcount);
|
|
add(p3,front,tstride,fcount);
|
|
}
|
|
else
|
|
{
|
|
add(p1,back,tstride,bcount); // if all three are in 'back' then copy to the 'back' output triangle.
|
|
add(p2,back,tstride,bcount);
|
|
add(p3,back,tstride,bcount);
|
|
}
|
|
return r1; // if all three points are on the same side of the plane return result
|
|
}
|
|
|
|
|
|
polygon pi(p1,p2,p3);
|
|
polygon pfront,pback;
|
|
|
|
plane part(_plane);
|
|
Split_Polygon(&pi,&part,pfront,pback);
|
|
|
|
for (int i=0; i<pfront.mVcount; i++)
|
|
{
|
|
add( &pfront.mVertices[i].x, front, tstride, fcount );
|
|
}
|
|
|
|
for (int i=0; i<pback.mVcount; i++)
|
|
{
|
|
add( &pback.mVertices[i].x, back, tstride, bcount );
|
|
}
|
|
|
|
PlaneTriResult ret = PTR_SPLIT;
|
|
|
|
if ( fcount == 0 && bcount )
|
|
ret = PTR_BACK;
|
|
|
|
if ( bcount == 0 && fcount )
|
|
ret = PTR_FRONT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
};
|