kdl_parser/convex_decomposition/ConvexDecomposition/ConvexDecomposition/bestfit.cpp

484 lines
13 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
// Geometric Tools, Inc.
// http://www.geometrictools.com
// Copyright (c) 1998-2006. All Rights Reserved
//
// The Wild Magic Library (WM3) source code is supplied under the terms of
// the license agreement
// http://www.geometrictools.com/License/WildMagic3License.pdf
// and may not be copied or disclosed except in accordance with the terms
// of that agreement.
/*!
**
** Copyright (c) 2007 by John W. Ratcliff mailto:jratcliff@infiniplex.net
**
** Portions of this source has been released with the PhysXViewer application, as well as
** Rocket, CreateDynamics, ODF, and as a number of sample code snippets.
**
** If you find this code useful or you are feeling particularily generous I would
** ask that you please go to http://www.amillionpixels.us and make a donation
** to Troy DeMolay.
**
** DeMolay is a youth group for young men between the ages of 12 and 21.
** It teaches strong moral principles, as well as leadership skills and
** public speaking. The donations page uses the 'pay for pixels' paradigm
** where, in this case, a pixel is only a single penny. Donations can be
** made for as small as $4 or as high as a $100 block. Each person who donates
** will get a link to their own site as well as acknowledgement on the
** donations blog located here http://www.amillionpixels.blogspot.com/
**
** If you wish to contact me you can use the following methods:
**
** Skype Phone: 636-486-4040 (let it ring a long time while it goes through switches)
** Skype ID: jratcliff63367
** Yahoo: jratcliff63367
** AOL: jratcliff1961
** email: jratcliff@infiniplex.net
** Personal website: http://jratcliffscarab.blogspot.com
** Coding Website: http://codesuppository.blogspot.com
** FundRaising Blog: http://amillionpixels.blogspot.com
** Fundraising site: http://www.amillionpixels.us
** New Temple Site: http://newtemple.blogspot.com
**
**
** The MIT license:
**
** Permission is hereby granted, free of charge, to any person obtaining a copy
** of this software and associated documentation files (the "Software"), to deal
** in the Software without restriction, including without limitation the rights
** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
** copies of the Software, and to permit persons to whom the Software is furnished
** to do so, subject to the following conditions:
**
** The above copyright notice and this permission notice shall be included in all
** copies or substantial portions of the Software.
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
** WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
** CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "bestfit.h"
namespace ConvexDecomposition
{
class Vec3
{
public:
Vec3(void) { };
Vec3(double _x,double _y,double _z) { x = _x; y = _y; z = _z; };
double dot(const Vec3 &v)
{
return x*v.x + y*v.y + z*v.z; // the dot product
}
double x;
double y;
double z;
};
class Eigen
{
public:
void DecrSortEigenStuff(void)
{
Tridiagonal(); //diagonalize the matrix.
QLAlgorithm(); //
DecreasingSort();
GuaranteeRotation();
}
void Tridiagonal(void)
{
double fM00 = mElement[0][0];
double fM01 = mElement[0][1];
double fM02 = mElement[0][2];
double fM11 = mElement[1][1];
double fM12 = mElement[1][2];
double fM22 = mElement[2][2];
m_afDiag[0] = fM00;
m_afSubd[2] = 0;
if (fM02 != (double)0.0)
{
double fLength = sqrt(fM01*fM01+fM02*fM02);
double fInvLength = ((double)1.0)/fLength;
fM01 *= fInvLength;
fM02 *= fInvLength;
double fQ = ((double)2.0)*fM01*fM12+fM02*(fM22-fM11);
m_afDiag[1] = fM11+fM02*fQ;
m_afDiag[2] = fM22-fM02*fQ;
m_afSubd[0] = fLength;
m_afSubd[1] = fM12-fM01*fQ;
mElement[0][0] = (double)1.0;
mElement[0][1] = (double)0.0;
mElement[0][2] = (double)0.0;
mElement[1][0] = (double)0.0;
mElement[1][1] = fM01;
mElement[1][2] = fM02;
mElement[2][0] = (double)0.0;
mElement[2][1] = fM02;
mElement[2][2] = -fM01;
m_bIsRotation = false;
}
else
{
m_afDiag[1] = fM11;
m_afDiag[2] = fM22;
m_afSubd[0] = fM01;
m_afSubd[1] = fM12;
mElement[0][0] = (double)1.0;
mElement[0][1] = (double)0.0;
mElement[0][2] = (double)0.0;
mElement[1][0] = (double)0.0;
mElement[1][1] = (double)1.0;
mElement[1][2] = (double)0.0;
mElement[2][0] = (double)0.0;
mElement[2][1] = (double)0.0;
mElement[2][2] = (double)1.0;
m_bIsRotation = true;
}
}
bool QLAlgorithm(void)
{
const int iMaxIter = 32;
for (int i0 = 0; i0 <3; i0++)
{
int i1;
for (i1 = 0; i1 < iMaxIter; i1++)
{
int i2;
for (i2 = i0; i2 <= (3-2); i2++)
{
double fTmp = fabs(m_afDiag[i2]) + fabs(m_afDiag[i2+1]);
if ( fabs(m_afSubd[i2]) + fTmp == fTmp )
break;
}
if (i2 == i0)
{
break;
}
double fG = (m_afDiag[i0+1] - m_afDiag[i0])/(((double)2.0) * m_afSubd[i0]);
double fR = sqrt(fG*fG+(double)1.0);
if (fG < (double)0.0)
{
fG = m_afDiag[i2]-m_afDiag[i0]+m_afSubd[i0]/(fG-fR);
}
else
{
fG = m_afDiag[i2]-m_afDiag[i0]+m_afSubd[i0]/(fG+fR);
}
double fSin = (double)1.0, fCos = (double)1.0, fP = (double)0.0;
for (int i3 = i2-1; i3 >= i0; i3--)
{
double fF = fSin*m_afSubd[i3];
double fB = fCos*m_afSubd[i3];
if (fabs(fF) >= fabs(fG))
{
fCos = fG/fF;
fR = sqrt(fCos*fCos+(double)1.0);
m_afSubd[i3+1] = fF*fR;
fSin = ((double)1.0)/fR;
fCos *= fSin;
}
else
{
fSin = fF/fG;
fR = sqrt(fSin*fSin+(double)1.0);
m_afSubd[i3+1] = fG*fR;
fCos = ((double)1.0)/fR;
fSin *= fCos;
}
fG = m_afDiag[i3+1]-fP;
fR = (m_afDiag[i3]-fG)*fSin+((double)2.0)*fB*fCos;
fP = fSin*fR;
m_afDiag[i3+1] = fG+fP;
fG = fCos*fR-fB;
for (int i4 = 0; i4 < 3; i4++)
{
fF = mElement[i4][i3+1];
mElement[i4][i3+1] = fSin*mElement[i4][i3]+fCos*fF;
mElement[i4][i3] = fCos*mElement[i4][i3]-fSin*fF;
}
}
m_afDiag[i0] -= fP;
m_afSubd[i0] = fG;
m_afSubd[i2] = (double)0.0;
}
if (i1 == iMaxIter)
{
return false;
}
}
return true;
}
void DecreasingSort(void)
{
//sort eigenvalues in decreasing order, e[0] >= ... >= e[iSize-1]
for (int i0 = 0, i1; i0 <= 3-2; i0++)
{
// locate maximum eigenvalue
i1 = i0;
double fMax = m_afDiag[i1];
int i2;
for (i2 = i0+1; i2 < 3; i2++)
{
if (m_afDiag[i2] > fMax)
{
i1 = i2;
fMax = m_afDiag[i1];
}
}
if (i1 != i0)
{
// swap eigenvalues
m_afDiag[i1] = m_afDiag[i0];
m_afDiag[i0] = fMax;
// swap eigenvectors
for (i2 = 0; i2 < 3; i2++)
{
double fTmp = mElement[i2][i0];
mElement[i2][i0] = mElement[i2][i1];
mElement[i2][i1] = fTmp;
m_bIsRotation = !m_bIsRotation;
}
}
}
}
void GuaranteeRotation(void)
{
if (!m_bIsRotation)
{
// change sign on the first column
for (int iRow = 0; iRow <3; iRow++)
{
mElement[iRow][0] = -mElement[iRow][0];
}
}
}
double mElement[3][3];
double m_afDiag[3];
double m_afSubd[3];
bool m_bIsRotation;
};
bool getBestFitPlane(unsigned int vcount,
const double *points,
unsigned int vstride,
const double *weights,
unsigned int wstride,
double *plane)
{
bool ret = false;
Vec3 kOrigin(0,0,0);
double wtotal = 0;
if ( 1 )
{
const char *source = (const char *) points;
const char *wsource = (const char *) weights;
for (unsigned int i=0; i<vcount; i++)
{
const double *p = (const double *) source;
double w = 1;
if ( wsource )
{
const double *ws = (const double *) wsource;
w = *ws; //
wsource+=wstride;
}
kOrigin.x+=p[0]*w;
kOrigin.y+=p[1]*w;
kOrigin.z+=p[2]*w;
wtotal+=w;
source+=vstride;
}
}
double recip = 1.0f / wtotal; // reciprocol of total weighting
kOrigin.x*=recip;
kOrigin.y*=recip;
kOrigin.z*=recip;
double fSumXX=0;
double fSumXY=0;
double fSumXZ=0;
double fSumYY=0;
double fSumYZ=0;
double fSumZZ=0;
if ( 1 )
{
const char *source = (const char *) points;
const char *wsource = (const char *) weights;
for (unsigned int i=0; i<vcount; i++)
{
const double *p = (const double *) source;
double w = 1;
if ( wsource )
{
const double *ws = (const double *) wsource;
w = *ws; //
wsource+=wstride;
}
Vec3 kDiff;
kDiff.x = w*(p[0] - kOrigin.x); // apply vertex weighting!
kDiff.y = w*(p[1] - kOrigin.y);
kDiff.z = w*(p[2] - kOrigin.z);
fSumXX+= kDiff.x * kDiff.x; // sume of the squares of the differences.
fSumXY+= kDiff.x * kDiff.y; // sume of the squares of the differences.
fSumXZ+= kDiff.x * kDiff.z; // sume of the squares of the differences.
fSumYY+= kDiff.y * kDiff.y;
fSumYZ+= kDiff.y * kDiff.z;
fSumZZ+= kDiff.z * kDiff.z;
source+=vstride;
}
}
fSumXX *= recip;
fSumXY *= recip;
fSumXZ *= recip;
fSumYY *= recip;
fSumYZ *= recip;
fSumZZ *= recip;
// setup the eigensolver
Eigen kES;
kES.mElement[0][0] = fSumXX;
kES.mElement[0][1] = fSumXY;
kES.mElement[0][2] = fSumXZ;
kES.mElement[1][0] = fSumXY;
kES.mElement[1][1] = fSumYY;
kES.mElement[1][2] = fSumYZ;
kES.mElement[2][0] = fSumXZ;
kES.mElement[2][1] = fSumYZ;
kES.mElement[2][2] = fSumZZ;
// compute eigenstuff, smallest eigenvalue is in last position
kES.DecrSortEigenStuff();
Vec3 kNormal;
kNormal.x = kES.mElement[0][2];
kNormal.y = kES.mElement[1][2];
kNormal.z = kES.mElement[2][2];
// the minimum energy
plane[0] = kNormal.x;
plane[1] = kNormal.y;
plane[2] = kNormal.z;
plane[3] = 0 - kNormal.dot(kOrigin);
return ret;
}
double getBoundingRegion(unsigned int vcount,const double *points,unsigned int pstride,double *bmin,double *bmax) // returns the diagonal distance
{
const unsigned char *source = (const unsigned char *) points;
bmin[0] = points[0];
bmin[1] = points[1];
bmin[2] = points[2];
bmax[0] = points[0];
bmax[1] = points[1];
bmax[2] = points[2];
for (unsigned int i=1; i<vcount; i++)
{
source+=pstride;
const double *p = (const double *) source;
if ( p[0] < bmin[0] ) bmin[0] = p[0];
if ( p[1] < bmin[1] ) bmin[1] = p[1];
if ( p[2] < bmin[2] ) bmin[2] = p[2];
if ( p[0] > bmax[0] ) bmax[0] = p[0];
if ( p[1] > bmax[1] ) bmax[1] = p[1];
if ( p[2] > bmax[2] ) bmax[2] = p[2];
}
double dx = bmax[0] - bmin[0];
double dy = bmax[1] - bmin[1];
double dz = bmax[2] - bmin[2];
return sqrt( dx*dx + dy*dy + dz*dz );
}
bool overlapAABB(const double *bmin1,const double *bmax1,const double *bmin2,const double *bmax2) // return true if the two AABB's overlap.
{
if ( bmax2[0] < bmin1[0] ) return false; // if the maximum is less than our minimum on any axis
if ( bmax2[1] < bmin1[1] ) return false;
if ( bmax2[2] < bmin1[2] ) return false;
if ( bmin2[0] > bmax1[0] ) return false; // if the minimum is greater than our maximum on any axis
if ( bmin2[1] > bmax1[1] ) return false; // if the minimum is greater than our maximum on any axis
if ( bmin2[2] > bmax1[2] ) return false; // if the minimum is greater than our maximum on any axis
return true; // the extents overlap
}
}; // end of namespace