379 lines
10 KiB
C++
379 lines
10 KiB
C++
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include "fitsphere.h"
|
|
|
|
|
|
/*!
|
|
**
|
|
** Copyright (c) 2007 by John W. Ratcliff mailto:jratcliff@infiniplex.net
|
|
**
|
|
** Portions of this source has been released with the PhysXViewer application, as well as
|
|
** Rocket, CreateDynamics, ODF, and as a number of sample code snippets.
|
|
**
|
|
** If you find this code useful or you are feeling particularily generous I would
|
|
** ask that you please go to http://www.amillionpixels.us and make a donation
|
|
** to Troy DeMolay.
|
|
**
|
|
** DeMolay is a youth group for young men between the ages of 12 and 21.
|
|
** It teaches strong moral principles, as well as leadership skills and
|
|
** public speaking. The donations page uses the 'pay for pixels' paradigm
|
|
** where, in this case, a pixel is only a single penny. Donations can be
|
|
** made for as small as $4 or as high as a $100 block. Each person who donates
|
|
** will get a link to their own site as well as acknowledgement on the
|
|
** donations blog located here http://www.amillionpixels.blogspot.com/
|
|
**
|
|
** If you wish to contact me you can use the following methods:
|
|
**
|
|
** Skype Phone: 636-486-4040 (let it ring a long time while it goes through switches)
|
|
** Skype ID: jratcliff63367
|
|
** Yahoo: jratcliff63367
|
|
** AOL: jratcliff1961
|
|
** email: jratcliff@infiniplex.net
|
|
** Personal website: http://jratcliffscarab.blogspot.com
|
|
** Coding Website: http://codesuppository.blogspot.com
|
|
** FundRaising Blog: http://amillionpixels.blogspot.com
|
|
** Fundraising site: http://www.amillionpixels.us
|
|
** New Temple Site: http://newtemple.blogspot.com
|
|
**
|
|
**
|
|
** The MIT license:
|
|
**
|
|
** Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
** of this software and associated documentation files (the "Software"), to deal
|
|
** in the Software without restriction, including without limitation the rights
|
|
** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
** copies of the Software, and to permit persons to whom the Software is furnished
|
|
** to do so, subject to the following conditions:
|
|
**
|
|
** The above copyright notice and this permission notice shall be included in all
|
|
** copies or substantial portions of the Software.
|
|
|
|
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
** WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
** CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/*
|
|
An Efficient Bounding Sphere
|
|
by Jack Ritter
|
|
from "Graphics Gems", Academic Press, 1990
|
|
*/
|
|
|
|
/* Routine to calculate tight bounding sphere over */
|
|
/* a set of points in 3D */
|
|
/* This contains the routine find_bounding_sphere(), */
|
|
/* the struct definition, and the globals used for parameters. */
|
|
/* The abs() of all coordinates must be < BIGNUMBER */
|
|
/* Code written by Jack Ritter and Lyle Rains. */
|
|
|
|
namespace ConvexDecomposition
|
|
{
|
|
|
|
#define BIGNUMBER 100000000.0 /* hundred million */
|
|
|
|
static inline void Set(double *n,double x,double y,double z)
|
|
{
|
|
n[0] = x;
|
|
n[1] = y;
|
|
n[2] = z;
|
|
};
|
|
|
|
static inline void Copy(double *dest,const double *source)
|
|
{
|
|
dest[0] = source[0];
|
|
dest[1] = source[1];
|
|
dest[2] = source[2];
|
|
}
|
|
|
|
double computeBoundingSphere(unsigned int vcount,const double *points,double *center)
|
|
{
|
|
|
|
double mRadius;
|
|
double mRadius2;
|
|
|
|
double xmin[3];
|
|
double xmax[3];
|
|
double ymin[3];
|
|
double ymax[3];
|
|
double zmin[3];
|
|
double zmax[3];
|
|
double dia1[3];
|
|
double dia2[3];
|
|
|
|
/* FIRST PASS: find 6 minima/maxima points */
|
|
Set(xmin,BIGNUMBER,BIGNUMBER,BIGNUMBER);
|
|
Set(xmax,-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);
|
|
Set(ymin,BIGNUMBER,BIGNUMBER,BIGNUMBER);
|
|
Set(ymax,-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);
|
|
Set(zmin,BIGNUMBER,BIGNUMBER,BIGNUMBER);
|
|
Set(zmax,-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);
|
|
|
|
for (unsigned i=0; i<vcount; i++)
|
|
{
|
|
const double *caller_p = &points[i*3];
|
|
|
|
if (caller_p[0]<xmin[0])
|
|
Copy(xmin,caller_p); /* New xminimum point */
|
|
if (caller_p[0]>xmax[0])
|
|
Copy(xmax,caller_p);
|
|
if (caller_p[1]<ymin[1])
|
|
Copy(ymin,caller_p);
|
|
if (caller_p[1]>ymax[1])
|
|
Copy(ymax,caller_p);
|
|
if (caller_p[2]<zmin[2])
|
|
Copy(zmin,caller_p);
|
|
if (caller_p[2]>zmax[2])
|
|
Copy(zmax,caller_p);
|
|
}
|
|
|
|
/* Set xspan = distance between the 2 points xmin & xmax (squared) */
|
|
double dx = xmax[0] - xmin[0];
|
|
double dy = xmax[1] - xmin[1];
|
|
double dz = xmax[2] - xmin[2];
|
|
double xspan = dx*dx + dy*dy + dz*dz;
|
|
|
|
/* Same for y & z spans */
|
|
dx = ymax[0] - ymin[0];
|
|
dy = ymax[1] - ymin[1];
|
|
dz = ymax[2] - ymin[2];
|
|
double yspan = dx*dx + dy*dy + dz*dz;
|
|
|
|
dx = zmax[0] - zmin[0];
|
|
dy = zmax[1] - zmin[1];
|
|
dz = zmax[2] - zmin[2];
|
|
double zspan = dx*dx + dy*dy + dz*dz;
|
|
|
|
/* Set points dia1 & dia2 to the maximally separated pair */
|
|
Copy(dia1,xmin);
|
|
Copy(dia2,xmax); /* assume xspan biggest */
|
|
double maxspan = xspan;
|
|
|
|
if (yspan>maxspan)
|
|
{
|
|
maxspan = yspan;
|
|
Copy(dia1,ymin);
|
|
Copy(dia2,ymax);
|
|
}
|
|
|
|
if (zspan>maxspan)
|
|
{
|
|
Copy(dia1,zmin);
|
|
Copy(dia2,zmax);
|
|
}
|
|
|
|
|
|
/* dia1,dia2 is a diameter of initial sphere */
|
|
/* calc initial center */
|
|
center[0] = (dia1[0]+dia2[0])*0.5f;
|
|
center[1] = (dia1[1]+dia2[1])*0.5f;
|
|
center[2] = (dia1[2]+dia2[2])*0.5f;
|
|
|
|
/* calculate initial radius**2 and radius */
|
|
|
|
dx = dia2[0]-center[0]; /* x component of radius vector */
|
|
dy = dia2[1]-center[1]; /* y component of radius vector */
|
|
dz = dia2[2]-center[2]; /* z component of radius vector */
|
|
|
|
mRadius2 = dx*dx + dy*dy + dz*dz;
|
|
mRadius = double(sqrt(mRadius2));
|
|
|
|
/* SECOND PASS: increment current sphere */
|
|
if ( 1 )
|
|
{
|
|
for (unsigned i=0; i<vcount; i++)
|
|
{
|
|
const double *caller_p = &points[i*3];
|
|
|
|
dx = caller_p[0]-center[0];
|
|
dy = caller_p[1]-center[1];
|
|
dz = caller_p[2]-center[2];
|
|
|
|
double old_to_p_sq = dx*dx + dy*dy + dz*dz;
|
|
|
|
if (old_to_p_sq > mRadius2) /* do r**2 test first */
|
|
{ /* this point is outside of current sphere */
|
|
double old_to_p = double(sqrt(old_to_p_sq));
|
|
/* calc radius of new sphere */
|
|
mRadius = (mRadius + old_to_p) * 0.5f;
|
|
mRadius2 = mRadius*mRadius; /* for next r**2 compare */
|
|
double old_to_new = old_to_p - mRadius;
|
|
|
|
/* calc center of new sphere */
|
|
|
|
double recip = 1.0f /old_to_p;
|
|
|
|
double cx = (mRadius*center[0] + old_to_new*caller_p[0]) * recip;
|
|
double cy = (mRadius*center[1] + old_to_new*caller_p[1]) * recip;
|
|
double cz = (mRadius*center[2] + old_to_new*caller_p[2]) * recip;
|
|
|
|
Set(center,cx,cy,cz);
|
|
}
|
|
}
|
|
}
|
|
|
|
return mRadius;
|
|
}
|
|
|
|
static inline void Set(float *n,float x,float y,float z)
|
|
{
|
|
n[0] = x;
|
|
n[1] = y;
|
|
n[2] = z;
|
|
};
|
|
|
|
static inline void Copy(float *dest,const float *source)
|
|
{
|
|
dest[0] = source[0];
|
|
dest[1] = source[1];
|
|
dest[2] = source[2];
|
|
}
|
|
|
|
|
|
|
|
float computeBoundingSphere(unsigned int vcount,const float *points,float *center)
|
|
{
|
|
float mRadius;
|
|
float mRadius2;
|
|
|
|
float xmin[3];
|
|
float xmax[3];
|
|
float ymin[3];
|
|
float ymax[3];
|
|
float zmin[3];
|
|
float zmax[3];
|
|
float dia1[3];
|
|
float dia2[3];
|
|
|
|
/* FIRST PASS: find 6 minima/maxima points */
|
|
Set(xmin,BIGNUMBER,BIGNUMBER,BIGNUMBER);
|
|
Set(xmax,-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);
|
|
Set(ymin,BIGNUMBER,BIGNUMBER,BIGNUMBER);
|
|
Set(ymax,-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);
|
|
Set(zmin,BIGNUMBER,BIGNUMBER,BIGNUMBER);
|
|
Set(zmax,-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);
|
|
|
|
for (unsigned i=0; i<vcount; i++)
|
|
{
|
|
const float *caller_p = &points[i*3];
|
|
|
|
if (caller_p[0]<xmin[0])
|
|
Copy(xmin,caller_p); /* New xminimum point */
|
|
if (caller_p[0]>xmax[0])
|
|
Copy(xmax,caller_p);
|
|
if (caller_p[1]<ymin[1])
|
|
Copy(ymin,caller_p);
|
|
if (caller_p[1]>ymax[1])
|
|
Copy(ymax,caller_p);
|
|
if (caller_p[2]<zmin[2])
|
|
Copy(zmin,caller_p);
|
|
if (caller_p[2]>zmax[2])
|
|
Copy(zmax,caller_p);
|
|
}
|
|
|
|
/* Set xspan = distance between the 2 points xmin & xmax (squared) */
|
|
float dx = xmax[0] - xmin[0];
|
|
float dy = xmax[1] - xmin[1];
|
|
float dz = xmax[2] - xmin[2];
|
|
float xspan = dx*dx + dy*dy + dz*dz;
|
|
|
|
/* Same for y & z spans */
|
|
dx = ymax[0] - ymin[0];
|
|
dy = ymax[1] - ymin[1];
|
|
dz = ymax[2] - ymin[2];
|
|
float yspan = dx*dx + dy*dy + dz*dz;
|
|
|
|
dx = zmax[0] - zmin[0];
|
|
dy = zmax[1] - zmin[1];
|
|
dz = zmax[2] - zmin[2];
|
|
float zspan = dx*dx + dy*dy + dz*dz;
|
|
|
|
/* Set points dia1 & dia2 to the maximally separated pair */
|
|
Copy(dia1,xmin);
|
|
Copy(dia2,xmax); /* assume xspan biggest */
|
|
float maxspan = xspan;
|
|
|
|
if (yspan>maxspan)
|
|
{
|
|
maxspan = yspan;
|
|
Copy(dia1,ymin);
|
|
Copy(dia2,ymax);
|
|
}
|
|
|
|
if (zspan>maxspan)
|
|
{
|
|
Copy(dia1,zmin);
|
|
Copy(dia2,zmax);
|
|
}
|
|
|
|
|
|
/* dia1,dia2 is a diameter of initial sphere */
|
|
/* calc initial center */
|
|
center[0] = (dia1[0]+dia2[0])*0.5f;
|
|
center[1] = (dia1[1]+dia2[1])*0.5f;
|
|
center[2] = (dia1[2]+dia2[2])*0.5f;
|
|
|
|
/* calculate initial radius**2 and radius */
|
|
|
|
dx = dia2[0]-center[0]; /* x component of radius vector */
|
|
dy = dia2[1]-center[1]; /* y component of radius vector */
|
|
dz = dia2[2]-center[2]; /* z component of radius vector */
|
|
|
|
mRadius2 = dx*dx + dy*dy + dz*dz;
|
|
mRadius = float(sqrt(mRadius2));
|
|
|
|
/* SECOND PASS: increment current sphere */
|
|
if ( 1 )
|
|
{
|
|
for (unsigned i=0; i<vcount; i++)
|
|
{
|
|
const float *caller_p = &points[i*3];
|
|
|
|
dx = caller_p[0]-center[0];
|
|
dy = caller_p[1]-center[1];
|
|
dz = caller_p[2]-center[2];
|
|
|
|
float old_to_p_sq = dx*dx + dy*dy + dz*dz;
|
|
|
|
if (old_to_p_sq > mRadius2) /* do r**2 test first */
|
|
{ /* this point is outside of current sphere */
|
|
float old_to_p = float(sqrt(old_to_p_sq));
|
|
/* calc radius of new sphere */
|
|
mRadius = (mRadius + old_to_p) * 0.5f;
|
|
mRadius2 = mRadius*mRadius; /* for next r**2 compare */
|
|
float old_to_new = old_to_p - mRadius;
|
|
|
|
/* calc center of new sphere */
|
|
|
|
float recip = 1.0f /old_to_p;
|
|
|
|
float cx = (mRadius*center[0] + old_to_new*caller_p[0]) * recip;
|
|
float cy = (mRadius*center[1] + old_to_new*caller_p[1]) * recip;
|
|
float cz = (mRadius*center[2] + old_to_new*caller_p[2]) * recip;
|
|
|
|
Set(center,cx,cy,cz);
|
|
}
|
|
}
|
|
}
|
|
|
|
return mRadius;
|
|
}
|
|
|
|
|
|
double computeSphereVolume(double r)
|
|
{
|
|
return (4.0f*3.141592654f*r*r*r)/3.0f; // 4/3 PI R cubed
|
|
}
|
|
|
|
};
|