kdl_parser/convex_decomposition/ConvexDecomposition/ConvexDecomposition/raytri.cpp

161 lines
4.7 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
/*!
**
** Copyright (c) 2007 by John W. Ratcliff mailto:jratcliff@infiniplex.net
**
** Portions of this source has been released with the PhysXViewer application, as well as
** Rocket, CreateDynamics, ODF, and as a number of sample code snippets.
**
** If you find this code useful or you are feeling particularily generous I would
** ask that you please go to http://www.amillionpixels.us and make a donation
** to Troy DeMolay.
**
** DeMolay is a youth group for young men between the ages of 12 and 21.
** It teaches strong moral principles, as well as leadership skills and
** public speaking. The donations page uses the 'pay for pixels' paradigm
** where, in this case, a pixel is only a single penny. Donations can be
** made for as small as $4 or as high as a $100 block. Each person who donates
** will get a link to their own site as well as acknowledgement on the
** donations blog located here http://www.amillionpixels.blogspot.com/
**
** If you wish to contact me you can use the following methods:
**
** Skype Phone: 636-486-4040 (let it ring a long time while it goes through switches)
** Skype ID: jratcliff63367
** Yahoo: jratcliff63367
** AOL: jratcliff1961
** email: jratcliff@infiniplex.net
** Personal website: http://jratcliffscarab.blogspot.com
** Coding Website: http://codesuppository.blogspot.com
** FundRaising Blog: http://amillionpixels.blogspot.com
** Fundraising site: http://www.amillionpixels.us
** New Temple Site: http://newtemple.blogspot.com
**
**
** The MIT license:
**
** Permission is hereby granted, free of charge, to any person obtaining a copy
** of this software and associated documentation files (the "Software"), to deal
** in the Software without restriction, including without limitation the rights
** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
** copies of the Software, and to permit persons to whom the Software is furnished
** to do so, subject to the following conditions:
**
** The above copyright notice and this permission notice shall be included in all
** copies or substantial portions of the Software.
** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
** WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
** CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "raytri.h"
namespace ConvexDecomposition
{
/* a = b - c */
#define vector(a,b,c) \
(a)[0] = (b)[0] - (c)[0]; \
(a)[1] = (b)[1] - (c)[1]; \
(a)[2] = (b)[2] - (c)[2];
#define innerProduct(v,q) \
((v)[0] * (q)[0] + \
(v)[1] * (q)[1] + \
(v)[2] * (q)[2])
#define crossProduct(a,b,c) \
(a)[0] = (b)[1] * (c)[2] - (c)[1] * (b)[2]; \
(a)[1] = (b)[2] * (c)[0] - (c)[2] * (b)[0]; \
(a)[2] = (b)[0] * (c)[1] - (c)[0] * (b)[1];
bool rayIntersectsTriangle(const double *p,const double *d,const double *v0,const double *v1,const double *v2,double &t)
{
double e1[3],e2[3],h[3],s[3],q[3];
double a,f,u,v;
vector(e1,v1,v0);
vector(e2,v2,v0);
crossProduct(h,d,e2);
a = innerProduct(e1,h);
if (a > -0.00001 && a < 0.00001)
return(false);
f = 1/a;
vector(s,p,v0);
u = f * (innerProduct(s,h));
if (u < 0.0 || u > 1.0)
return(false);
crossProduct(q,s,e1);
v = f * innerProduct(d,q);
if (v < 0.0 || u + v > 1.0)
return(false);
// at this stage we can compute t to find out where
// the intersection point is on the line
t = f * innerProduct(e2,q);
if (t > 0) // ray intersection
return(true);
else // this means that there is a line intersection
// but not a ray intersection
return (false);
}
bool lineIntersectsTriangle(const double *rayStart,const double *rayEnd,const double *p1,const double *p2,const double *p3,double *sect)
{
double dir[3];
dir[0] = rayEnd[0] - rayStart[0];
dir[1] = rayEnd[1] - rayStart[1];
dir[2] = rayEnd[2] - rayStart[2];
double d = sqrt(dir[0]*dir[0] + dir[1]*dir[1] + dir[2]*dir[2]);
double r = 1.0f / d;
dir[0]*=r;
dir[1]*=r;
dir[2]*=r;
double t;
bool ret = rayIntersectsTriangle(rayStart, dir, p1, p2, p3, t );
if ( ret )
{
if ( t > d )
{
sect[0] = rayStart[0] + dir[0]*t;
sect[1] = rayStart[1] + dir[1]*t;
sect[2] = rayStart[2] + dir[2]*t;
}
else
{
ret = false;
}
}
return ret;
}
}; // end of namespace